Exponential Relations Among Algebraic Integer Conjugates

Greg Knapp
University of Calgary

23 March 2024

Pacific Institute for the
Mathematical Sciences

Joint work with Seda Albayrak, Samprit Ghosh, and Khoa Nguyen.

Land Acknowledgment

The University of Calgary, located in the heart of Southern Alberta, both acknowledges and pays tribute to the traditional territories of the peoples of Treaty 7, which include the Blackfoot Confederacy (comprised of the Siksika, the Piikani, and the Kainai First Nations), the Tsuut'ina First Nation, and the Stoney Nakoda (including Chiniki, Bearspaw, and Goodstoney First Nations). The City of Calgary is also home to the Métis Nation of Alberta Districts 5 and 6.

Motivating Result

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Theorem (Buguead and Nguyen, 2023)

Motivating Result

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions

Theorem (Buguead and Nguyen, 2023)

Let ξ be an irrational, algebraic number of degree $d \geqslant 3$. Let $\varepsilon>0$. Let $\left(u_{n}\right)_{n \geqslant 1}$ be a non-degenerate linear recurrence sequence of rational integers which is not a polynomial sequence. Then there are only finitely many u_{n} for which there exists a $v_{n} \in \mathbb{Z}$ so that

$$
\left|\xi-\frac{v_{n}}{u_{n}}\right|<\frac{1}{\left|u_{n}\right|^{1+\frac{1}{d-1}+\varepsilon}} .
$$

Motivating Result

Theorem (Buguead and Nguyen, 2023)

Let ξ be an irrational, algebraic number of degree $d \geqslant 3$. Let $\varepsilon>0$. Let $\left(u_{n}\right)_{n \geqslant 1}$ be a non-degenerate linear recurrence sequence of rational integers which is not a polynomial sequence. Then there are only finitely many u_{n} for which there exists a $v_{n} \in \mathbb{Z}$ so that

$$
\left|\xi-\frac{v_{n}}{u_{n}}\right|<\frac{1}{\left|u_{n}\right|^{1+\frac{1}{d-1}+\varepsilon}} .
$$

Interpretation

Certain sequences cannot serve as denominators for good rational approximations of ξ.

Motivating Result

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Theorem (Buguead and Nguyen, 2023)
Let ξ be an irrational, algebraic number of degree $d \geqslant 3$. Let $\varepsilon>0$. Let $\left(u_{n}\right)_{n \geqslant 1}$ be a non-degenerate linear recurrence sequence of rational integers which is not a polynomial sequence. Then there are only finitely many u_{n} for which there exists a $v_{n} \in \mathbb{Z}$ so that

$$
\left|\xi-\frac{v_{n}}{u_{n}}\right|<\frac{1}{\left|u_{n}\right|^{1+\frac{1}{d-1}+\varepsilon}}
$$

Question

Can the exponent of $\frac{1}{d-1}$ be improved (decreased) at all in order to achieve the same result?

Source of the Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Source of the Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Source of the Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Source of the Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right| .
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Proof

Source of the Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Proof

$$
\left|\alpha _ { 0 } \left\|\left.\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{1}\right|^{d-2}\right.\right.
$$

Source of the Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Proof

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{1}\right|^{d-2} \geqslant\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{2}\right|^{d-2}
$$

Source of the Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1 .
$$

Proof

$$
\begin{aligned}
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} & =\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{1}\right|^{d-2} \geqslant\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{2}\right|^{d-2} \\
& \geqslant\left|\alpha_{0} \| \alpha_{1}\right| \ldots\left|\alpha_{d-1}\right|
\end{aligned}
$$

Source of the Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right| .
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1 .
$$

Proof

$$
\begin{aligned}
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} & =\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{1}\right|^{d-2} \geqslant\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{2}\right|^{d-2} \\
& \geqslant\left|\alpha_{0} \| \alpha_{1}\right| \ldots\left|\alpha_{d-1}\right|=|f(0)|
\end{aligned}
$$

Source of the Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right|
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Proof

$$
\begin{aligned}
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} & =\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{1}\right|^{d-2} \geqslant\left|\alpha_{0}\left\|\alpha_{1}\right\| \alpha_{2}\right|^{d-2} \\
& \geqslant\left|\alpha_{0} \| \alpha_{1}\right| \ldots\left|\alpha_{d-1}\right|=|f(0)| \geqslant 1
\end{aligned}
$$

Source of the Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

The exponent in Bugueaud and Nguyen's theorem comes from the following fact:

Fact

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible of degree d. Suppose that the roots of $f(x)$ are $\alpha_{0}, \ldots, \alpha_{d-1}$, written so that

$$
\left|\alpha_{0}\right| \geqslant\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d-1}\right| .
$$

Then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1} \geqslant 1
$$

Question

Can we replace $d-1$ by anything else and still have the fact be true?

Other Exponents

Exponential

Relations
Among Algebraic
Integer
Conjugates
Greg Knapp

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

- Pick an appropriate $f(x)$.

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

- Pick an appropriate $f(x)$.
- If $\left|\alpha_{1}\right| \geqslant 1$, then $\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1$.

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

- Pick an appropriate $f(x)$.
- If $\left|\alpha_{1}\right| \geqslant 1$, then $\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1$.

■ Otherwise, $\left|\alpha_{1}\right|<1$, so

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

- Pick an appropriate $f(x)$.
- If $\left|\alpha_{1}\right| \geqslant 1$, then $\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1$.

■ Otherwise, $\left|\alpha_{1}\right|<1$, so

$$
\left|\alpha _ { 0 } \left\|\left.\alpha_{1}\right|^{c} \geqslant\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}\right.\right.
$$

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Partial Answer

If $c \leqslant d-1$, then the above property holds:

- Pick an appropriate $f(x)$.
- If $\left|\alpha_{1}\right| \geqslant 1$, then $\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1$.

■ Otherwise, $\left|\alpha_{1}\right|<1$, so

$$
\left|\alpha _ { 0 } \left\|\left.\alpha_{1}\right|^{c} \geqslant\left|\alpha_{0} \| \alpha_{1}\right|^{d-1} \geqslant 1 .\right.\right.
$$

Other Exponents

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Deeper fact

If the above property holds, then $c \leqslant d-1$.

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Deeper fact

If the above property holds, then $c \leqslant d-1$.
■ Why?

Other Exponents

Question

Let $d \geqslant 2$ be an integer. For which values of $c \geqslant 0$ is it true that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{C}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1 ?
$$

Deeper fact

If the above property holds, then $c \leqslant d-1$.

- Why?
- Let's look at the family of polynomials $f_{d, h}(x)=x^{d}-h x^{d-1}-1$.

A Useful Example

Exponential

Relations
Among Algebraic Integer Conjugates

Greg Knapp

Definition

For any integers h and d with $d \geqslant 2$, let $f_{d, h}(x)=x^{d}-h x^{d-1}-1$.

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

A Useful Example

Exponential

Relations
Among Algebraic
Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

For any integers h and d with $d \geqslant 2$, let

$$
f_{d, h}(x)=x^{d}-h x^{d-1}-1
$$

Facts

■ For infinitely many integers h, the polynomial $f_{d, h}(x)$ is irreducible over $\mathbb{Z}[x]$.

A Useful Example

Exponential

Relations
Among Algebraic
Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

For any integers h and d with $d \geqslant 2$, let

$$
f_{d, h}(x)=x^{d}-h x^{d-1}-1
$$

Facts

- For infinitely many integers h, the polynomial $f_{d, h}(x)$ is irreducible over $\mathbb{Z}[x]$.
- $f_{d, h}$ has one "large" root: $\left|\alpha_{0}\right| \asymp|h|$.

A Useful Example

Exponential

Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

For any integers h and d with $d \geqslant 2$, let

$$
f_{d, h}(x)=x^{d}-h x^{d-1}-1
$$

Facts

- For infinitely many integers h, the polynomial $f_{d, h}(x)$ is irreducible over $\mathbb{Z}[x]$.
- $f_{d, h}$ has one "large" root: $\left|\alpha_{0}\right| \asymp|h|$.
- $f_{d, h}$ has $d-1$ "small" roots:

$$
\left|\alpha_{1}\right|, \ldots,\left|\alpha_{d-1}\right| \asymp|h|^{-1 /(d-1)}
$$

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

Proof

Apply this property to each of the (infinitely many) irreducible polynomials of the form $f_{d, h}(x)=x^{d}-h x^{d-1}-1$:

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

Proof

Apply this property to each of the (infinitely many) irreducible polynomials of the form $f_{d, h}(x)=x^{d}-h x^{d-1}-1$:

$$
1 \leqslant\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c}
$$

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

Proof

Apply this property to each of the (infinitely many) irreducible polynomials of the form $f_{d, h}(x)=x^{d}-h x^{d-1}-1$:

$$
1 \leqslant\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \asymp|h|^{1-\frac{c}{d-1}} .
$$

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

Proof

Apply this property to each of the (infinitely many) irreducible polynomials of the form $f_{d, h}(x)=x^{d}-h x^{d-1}-1$:

$$
1 \leqslant\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \asymp|h|^{1-\frac{c}{d-1}} .
$$

Hence, $1-\frac{c}{d-1} \geqslant 0$,

$d-1$ Is The Best Possible Exponent

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Claim

Suppose that $c \geqslant 0$ has the property that for every monic, irreducible $f(x) \in \mathbb{Z}[x]$ of degree d with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

Then $c \leqslant d-1$.

Proof

Apply this property to each of the (infinitely many) irreducible polynomials of the form $f_{d, h}(x)=x^{d}-h x^{d-1}-1$:

$$
1 \leqslant\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \asymp|h|^{1-\frac{c}{d-1}} .
$$

Hence, $1-\frac{c}{d-1} \geqslant 0$, i.e. $c \leqslant d-1$.

Summary

Exponential

Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

Recap

A real number $c \geqslant 0$ has the property that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

if and only if $c \in[0, d-1]$.

Summary

Recap

A real number $c \geqslant 0$ has the property that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

if and only if $c \in[0, d-1]$.

Corollary

The exponent in our motivating theorem is optimal.

Summary

Exponential
Relations
Among
Algebraic
Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Recap

A real number $c \geqslant 0$ has the property that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$,

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{c} \geqslant 1
$$

if and only if $c \in[0, d-1]$.

Follow-Up Questions

Summary

Exponential

Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Recap

A real number $c \geqslant 0$ has the property that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

if and only if $c \in[0, d-1]$.

Follow-Up Questions

■ If this is the "one-dimesional problem," what do the higher-dimensional problems look like?

Summary

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Recap

A real number $c \geqslant 0$ has the property that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c} \geqslant 1
$$

if and only if $c \in[0, d-1]$.

Follow-Up Questions

■ If this is the "one-dimesional problem," what do the higher-dimensional problems look like?
■ For $c \in[0, d-1]$, can we guarantee that $\left|\alpha_{0} \| \alpha_{1}\right|^{c}>1$? If so, by how much?

Problem Statement

Exponential

Relations
Among Algebraic Integer Conjugates

Definition

Problem Statement

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

Let $d \geqslant 2$ be an integer and let $1 \leqslant k<d$ be another integer.

Problem Statement

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

Let $d \geqslant 2$ be an integer and let $1 \leqslant k<d$ be another integer. Let $E_{k, d} \subseteq \mathbb{R}^{k}$ be the set of all tuples $\left(c_{1}, \ldots, c_{k}\right)$ with each $c_{i} \geqslant 0$ and such that

Problem Statement

Exponential

Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions

Definition

Let $d \geqslant 2$ be an integer and let $1 \leqslant k<d$ be another integer. Let $E_{k, d} \subseteq \mathbb{R}^{k}$ be the set of all tuples $\left(c_{1}, \ldots, c_{k}\right)$ with each $c_{i} \geqslant 0$ and such that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$ of degree d,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}} \geqslant 1
$$

Problem Statement

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Definition

Let $d \geqslant 2$ be an integer and let $1 \leqslant k<d$ be another integer. Let $E_{k, d} \subseteq \mathbb{R}^{k}$ be the set of all tuples $\left(c_{1}, \ldots, c_{k}\right)$ with each $c_{i} \geqslant 0$ and such that for every irreducible, monic $f(x) \in \mathbb{Z}[x]$ of degree d,

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}} \geqslant 1
$$

Question

What is the shape of $E_{k, d}$?

First Perspective

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{aligned}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

First Perspective

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{array}{rlrl}
x_{i} & \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{array}
$$

Example

$E_{1, d}$ is defined by the inequalities

First Perspective

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{array}{rlrl}
x_{i} & \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{array}
$$

Example

$E_{1, d}$ is defined by the inequalities

$$
x \geqslant 0
$$

First Perspective

Exponential
Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{aligned}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

Example

$E_{1, d}$ is defined by the inequalities

$$
\begin{array}{r}
x \geqslant 0 \\
x \leqslant d-1
\end{array}
$$

First Perspective

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{array}{rlr}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{array}
$$

Example

$E_{2, d}$ is defined by the inequalities

First Perspective

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher Dimensions

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{aligned}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

Example

$E_{2, d}$ is defined by the inequalities $x \geqslant 0, y \geqslant 0$, and

First Perspective

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{aligned}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

Example

$E_{2, d}$ is defined by the inequalities $x \geqslant 0, y \geqslant 0$, and

$$
x+y \leqslant d-1
$$

First Perspective

Exponential
Relations
Among Algebraic
Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher

Theorem (Albayrak, Ghosh, K., Nguyen)

$E_{k, d}$ is the set of all points in \mathbb{R}^{k} which satisfy the following:

$$
\begin{aligned}
x_{i} \geqslant 0 & \text { for } 1 \leqslant i \leqslant k \\
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} & \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

Example

$E_{2, d}$ is defined by the inequalities $x \geqslant 0, y \geqslant 0$, and

$$
\begin{aligned}
x+y & \leqslant d-1 \\
-\frac{d-2}{2} x+y & \leqslant \frac{d-2}{2}
\end{aligned}
$$

A Picture

Exponential

Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

A picture of $E_{2, d}$ created in SageMath:

Another Picture

Exponential

Relations
Among
Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

An image of $E_{3, d}$ created in SageMath:

Sources of the Inequalities

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Where do the inequalities of the form

$$
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} \quad \text { for } 1 \leqslant i \leqslant k
$$

come from?

Sources of the Inequalities

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Where do the inequalities of the form

$$
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} \quad \text { for } 1 \leqslant i \leqslant k
$$

come from?
Answer

- The i th inequality comes from the family of polynomials

$$
x^{d}-h x^{d-i}-1
$$

for $h \in \mathbb{Z}$.

Sources of the Inequalities

Question

Where do the inequalities of the form

$$
-\frac{d-i}{i} \sum_{j=1}^{i-1} x_{j}+\sum_{j=i}^{k} x_{j} \leqslant \frac{d-i}{i} \quad \text { for } 1 \leqslant i \leqslant k
$$

come from?
Answer

- The i th inequality comes from the family of polynomials

$$
x^{d}-h x^{d-i}-1
$$

for $h \in \mathbb{Z}$.
■ For large $|h|$, these polynomials have i roots of size $\approx|h|^{1 / i}$ and $d-i$ roots of size $\approx|h|^{-1 /(d-i)}$.

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

Question

For $c \in[0, d-1]$, is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c}=1 ?
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation

Exploration
Higher
Dimensions
Strict
Inequality

Question

For $c \in[0, d-1]$, is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c}=1 ?
$$

"Trivial" Answer
If $f(x)$ is cyclotomic, then

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{c}=1
$$

for any c.

Equality and Inequality in $E_{1, d}$

Question

For $c \in[0, d-1]$, is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c}=1 ?
$$

"Trivial" Answer
If $f(x)$ is cyclotomic, then

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{c}=1
$$

for any c.

Reduction

If $f(x)$ is not cyclotomic, then $\left|\alpha_{0} \| \alpha_{1}\right|^{c}=1$ only if $c=d-1$.

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}=1 ?
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0} \| \alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1
$$

Equality and Inequality in $E_{1, d}$

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

$$
\left|\alpha _ { 0 } \left\|\left.\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \| \alpha_{1}\right|^{2}\right.\right.
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1 .
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{2}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|\left|\alpha_{2}\right|
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1 .
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{2}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|\left|\alpha_{2}\right|=|f(0)|=1 .
$$

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1 .
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{2}=\left|\alpha_{0}\right|\left|\alpha_{1} \| \alpha_{2}\right|=|f(0)|=1 .
$$

- $f(x)=x^{3}+x^{2}-x+1$ is such a polynomial.

Equality and Inequality in $E_{1, d}$

Exponential
Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Question

Is it possible that

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=1 ?
$$

Nontrivial Answers

- $f(x)=x^{2}-x-1$ has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0} \alpha_{1}\right|=|f(0)|=1 .
$$

- If $f(x) \in \mathbb{Z}[x]$ is a monic, irreducible cubic with $|f(0)|=1$ and its two smaller roots are complex conjugates, then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{2}=\left|\alpha_{0}\right|\left|\alpha_{1}\right|\left|\alpha_{2}\right|=|f(0)|=1 .
$$

- $f(x)=x^{3}+x^{2}-x+1$ is such a polynomial.
- If $\operatorname{deg}(f)>3$, then

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{d-1}>1
$$

Equality and Inequality in General

Exponential

Relations
Among Algebraic Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Theorem (Albayrak, Ghosh, K., Nguyen)
If $d>3 k+1$ and $\left(c_{1}, \ldots, c_{k}\right) \in E_{k, d}$, then any monic, irreducible, noncyclotomic $f(x) \in \mathbb{Z}[x]$ with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}}>1
$$

Equality and Inequality in General

Exponential

Relations
Among
Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Theorem (Albayrak, Ghosh, K., Nguyen)
If $d>3 k+1$ and $\left(c_{1}, \ldots, c_{k}\right) \in E_{k, d}$, then any monic, irreducible, noncyclotomic $f(x) \in \mathbb{Z}[x]$ with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}}>1
$$

Note

The lower bound on d is suboptimal for $k=1$ and $k=2$.

Equality and Inequality in General

Exponential

Relations
Among
Algebraic
Integer Conjugates

Greg Knapp

Motivation
Exploration
Higher
Dimensions
Strict
Inequality

Theorem (Albayrak, Ghosh, K., Nguyen)

If $d>3 k+1$ and $\left(c_{1}, \ldots, c_{k}\right) \in E_{k, d}$, then any monic, irreducible, noncyclotomic $f(x) \in \mathbb{Z}[x]$ with roots $\alpha_{0}, \ldots, \alpha_{d-1}$ in descending order has

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}}>1 .
$$

Future Work

If $d>3 k+1$, can we get a lower bound on

$$
\left|\alpha_{0}\right|\left|\alpha_{1}\right|^{c_{1}} \ldots\left|\alpha_{k}\right|^{c_{k}}-1 ?
$$

Thank you!

Exponential
Relations
Among Algebraic
Integer
Conjugates
Greg Knapp

Motivation
Exploration
Higher
Questions?
Dimensions
Strict
Inequality

