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Motivating Result

Theorem (Buguead and Nguyen, 2023)

Let ξ be an irrational, algebraic number of degree d ⩾ 3. Let
ε > 0. Let (un)n⩾1 be a non-degenerate linear recurrence
sequence of rational integers which is not a polynomial
sequence. Then there are only finitely many un for which there
exists a vn ∈ Z so that∣∣∣∣ξ − vn

un

∣∣∣∣ < 1

|un|1+
1

d−1
+ε

.

Interpretation

Certain sequences cannot serve as denominators for good
rational approximations of ξ.
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Motivating Result

Theorem (Buguead and Nguyen, 2023)

Let ξ be an irrational, algebraic number of degree d ⩾ 3. Let
ε > 0. Let (un)n⩾1 be a non-degenerate linear recurrence
sequence of rational integers which is not a polynomial
sequence. Then there are only finitely many un for which there
exists a vn ∈ Z so that∣∣∣∣ξ − vn

un

∣∣∣∣ < 1

|un|1+
1

d−1
+ε

.

Question

Can the exponent of 1
d−1 be improved (decreased) at all in

order to achieve the same result?
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Source of the Exponent

The exponent in Bugueaud and Nguyen’s theorem comes from
the following fact:

Fact

Suppose that f(x) ∈ Z[x] is monic and irreducible of degree d.
Suppose that the roots of f(x) are α0, . . . , αd−1, written so
that

|α0| ⩾ |α1| ⩾ . . . ⩾ |αd−1|.

Then
|α0||α1|d−1 ⩾ 1.

Proof

|α0||α1|d−1 = |α0||α1||α1|d−2 ⩾ |α0||α1||α2|d−2

⩾ |α0||α1| . . . |αd−1| = |f(0)| ⩾ 1.
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Source of the Exponent

The exponent in Bugueaud and Nguyen’s theorem comes from
the following fact:

Fact

Suppose that f(x) ∈ Z[x] is monic and irreducible of degree d.
Suppose that the roots of f(x) are α0, . . . , αd−1, written so
that

|α0| ⩾ |α1| ⩾ . . . ⩾ |αd−1|.

Then
|α0||α1|d−1 ⩾ 1.

Question

Can we replace d− 1 by anything else and still have the fact be
true?
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Other Exponents

Question

Let d ⩾ 2 be an integer. For which values of c ⩾ 0 is it true
that for every monic, irreducible f(x) ∈ Z[x] of degree d with
roots α0, . . . , αd−1 ∈ C in descending order,

|α0||α1|c ⩾ 1?

Partial Answer

If c ⩽ d− 1, then the above property holds:

Pick an appropriate f(x).

If |α1| ⩾ 1, then |α0||α1|c ⩾ 1.

Otherwise, |α1| < 1, so

|α0||α1|c ⩾ |α0||α1|d−1 ⩾ 1.
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Why?

Let’s look at the family of polynomials
fd,h(x) = xd − hxd−1 − 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Other Exponents

Question

Let d ⩾ 2 be an integer. For which values of c ⩾ 0 is it true
that for every monic, irreducible f(x) ∈ Z[x] of degree d with
roots α0, . . . , αd−1 ∈ C in descending order,

|α0||α1|c ⩾ 1?

Deeper fact

If the above property holds, then c ⩽ d− 1.

Why?

Let’s look at the family of polynomials
fd,h(x) = xd − hxd−1 − 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Other Exponents

Question

Let d ⩾ 2 be an integer. For which values of c ⩾ 0 is it true
that for every monic, irreducible f(x) ∈ Z[x] of degree d with
roots α0, . . . , αd−1 ∈ C in descending order,

|α0||α1|c ⩾ 1?

Deeper fact

If the above property holds, then c ⩽ d− 1.

Why?

Let’s look at the family of polynomials
fd,h(x) = xd − hxd−1 − 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Other Exponents

Question

Let d ⩾ 2 be an integer. For which values of c ⩾ 0 is it true
that for every monic, irreducible f(x) ∈ Z[x] of degree d with
roots α0, . . . , αd−1 ∈ C in descending order,

|α0||α1|c ⩾ 1?

Deeper fact

If the above property holds, then c ⩽ d− 1.

Why?

Let’s look at the family of polynomials
fd,h(x) = xd − hxd−1 − 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

A Useful Example

Definition

For any integers h and d with d ⩾ 2, let
fd,h(x) = xd − hxd−1 − 1.

Facts

For infinitely many integers h, the polynomial fd,h(x) is
irreducible over Z[x].
fd,h has one “large” root: |α0| ≍ |h|.
fd,h has d− 1 “small” roots:

|α1|, . . . , |αd−1| ≍ |h|−1/(d−1).
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d− 1 Is The Best Possible Exponent

Claim

Suppose that c ⩾ 0 has the property that for every monic,
irreducible f(x) ∈ Z[x] of degree d with roots α0, . . . , αd−1 in
descending order,

|α0||α1|c ⩾ 1.

Then c ⩽ d− 1.

Proof

Apply this property to each of the (infinitely many) irreducible
polynomials of the form fd,h(x) = xd − hxd−1 − 1:

1 ⩽ |α0||α1|c ≍ |h|1−
c

d−1 .

Hence, 1− c
d−1 ⩾ 0, i.e. c ⩽ d− 1.
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Proof

Apply this property to each of the (infinitely many) irreducible
polynomials of the form fd,h(x) = xd − hxd−1 − 1:

1 ⩽ |α0||α1|c ≍ |h|1−
c

d−1 .

Hence, 1− c
d−1 ⩾ 0,

i.e. c ⩽ d− 1.
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Summary

Recap

A real number c ⩾ 0 has the property that for every irreducible,
monic f(x) ∈ Z[x],

|α0||α1|c ⩾ 1

if and only if c ∈ [0, d− 1].

Corollary

The exponent in our motivating theorem is optimal.
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Summary

Recap

A real number c ⩾ 0 has the property that for every irreducible,
monic f(x) ∈ Z[x],

|α0||α1|c ⩾ 1

if and only if c ∈ [0, d− 1].

Follow-Up Questions

If this is the “one-dimesional problem,” what do the
higher-dimensional problems look like?

For c ∈ [0, d− 1], can we guarantee that |α0||α1|c > 1? If
so, by how much?
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Problem Statement

Definition

Let d ⩾ 2 be an integer and let 1 ⩽ k < d be another integer.
Let Ek,d ⊆ Rk be the set of all tuples (c1, . . . , ck) with each
ci ⩾ 0 and such that for every irreducible, monic f(x) ∈ Z[x]
of degree d,

|α0||α1|c1 . . . |αk|ck ⩾ 1.

Question

What is the shape of Ek,d?
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First Perspective

Theorem (Albayrak, Ghosh, K., Nguyen)

Ek,d is the set of all points in Rk which satisfy the following:

xi ⩾ 0 for 1 ⩽ i ⩽ k

−d− i

i

i−1∑
j=1

xj +

k∑
j=i

xj ⩽
d− i

i
for 1 ⩽ i ⩽ k

Example

E1,d is defined by the inequalities

x ⩾ 0

x ⩽ d− 1
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First Perspective

Theorem (Albayrak, Ghosh, K., Nguyen)

Ek,d is the set of all points in Rk which satisfy the following:

xi ⩾ 0 for 1 ⩽ i ⩽ k

−d− i

i

i−1∑
j=1

xj +

k∑
j=i

xj ⩽
d− i

i
for 1 ⩽ i ⩽ k

Example

E2,d is defined by the inequalities

x ⩾ 0, y ⩾ 0, and

x+ y ⩽ d− 1

− d− 2

2
x+ y ⩽

d− 2

2
.
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A Picture

A picture of E2,d created in SageMath:

x

y

(0, 0)

(
0, d−2

2

)

(1, d − 2)

(d − 1, 0)
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Another Picture

An image of E3,d created in SageMath:

x

y

z

(0, 0, 0)

(
0, 1

2
, d−3

2

)

(
0, d−2

2
, 0

)

(1, 1, d − 3)

(1, d − 2, 0)

(2, 0, d − 3)

(d − 1, 0, 0)
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Sources of the Inequalities

Question

Where do the inequalities of the form

−d− i

i

i−1∑
j=1

xj +

k∑
j=i

xj ⩽
d− i

i
for 1 ⩽ i ⩽ k

come from?

Answer

The ith inequality comes from the family of polynomials

xd − hxd−i − 1
for h ∈ Z.
For large |h|, these polynomials have i roots of size
≈ |h|1/i and d− i roots of size ≈ |h|−1/(d−i).
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Equality and Inequality in E1,d

Question

For c ∈ [0, d− 1], is it possible that

|α0||α1|c = 1?

“Trivial” Answer

If f(x) is cyclotomic, then

|α0||α1|c = 1

for any c.

Reduction

If f(x) is not cyclotomic, then |α0||α1|c = 1 only if c = d− 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Equality and Inequality in E1,d

Question

For c ∈ [0, d− 1], is it possible that

|α0||α1|c = 1?

“Trivial” Answer

If f(x) is cyclotomic, then

|α0||α1|c = 1

for any c.

Reduction

If f(x) is not cyclotomic, then |α0||α1|c = 1 only if c = d− 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Equality and Inequality in E1,d

Question

For c ∈ [0, d− 1], is it possible that

|α0||α1|c = 1?

“Trivial” Answer

If f(x) is cyclotomic, then

|α0||α1|c = 1

for any c.

Reduction

If f(x) is not cyclotomic, then |α0||α1|c = 1 only if c = d− 1.



Exponential
Relations
Among
Algebraic
Integer

Conjugates

Greg Knapp

Motivation

Exploration

Higher
Dimensions

Strict
Inequality

Equality and Inequality in E1,d

Question

Is it possible that
|α0||α1|d−1 = 1?

Nontrivial Answers

f(x) = x2 − x− 1 has

|α0||α1|d−1 = |α0α1|

= |f(0)| = 1.

If f(x) ∈ Z[x] is a monic, irreducible cubic with |f(0)| = 1
and its two smaller roots are complex conjugates, then

|α0||α1|d−1 = |α0||α1|2 = |α0||α1||α2| = |f(0)| = 1.

f(x) = x3 + x2 − x+ 1 is such a polynomial.

If deg(f) > 3, then

|α0||α1|d−1 > 1.
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Equality and Inequality in General

Theorem (Albayrak, Ghosh, K., Nguyen)

If d > 3k + 1 and (c1, . . . , ck) ∈ Ek,d, then any monic,
irreducible, noncyclotomic f(x) ∈ Z[x] with roots α0, . . . , αd−1

in descending order has

|α0||α1|c1 . . . |αk|ck > 1.

Note

The lower bound on d is suboptimal for k = 1 and k = 2.
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Equality and Inequality in General

Theorem (Albayrak, Ghosh, K., Nguyen)

If d > 3k + 1 and (c1, . . . , ck) ∈ Ek,d, then any monic,
irreducible, noncyclotomic f(x) ∈ Z[x] with roots α0, . . . , αd−1

in descending order has

|α0||α1|c1 . . . |αk|ck > 1.

Note

The lower bound on d is suboptimal for k = 1 and k = 2.
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Equality and Inequality in General

Theorem (Albayrak, Ghosh, K., Nguyen)

If d > 3k + 1 and (c1, . . . , ck) ∈ Ek,d, then any monic,
irreducible, noncyclotomic f(x) ∈ Z[x] with roots α0, . . . , αd−1

in descending order has

|α0||α1|c1 . . . |αk|ck > 1.

Future Work

If d > 3k + 1, can we get a lower bound on

|α0||α1|c1 . . . |αk|ck − 1?
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Thank you!

Questions?
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